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Abstract

There exist examples of systems in which small, simple metallic
cations are associated with ring-like molecules (c¢.g., aromatic
radical anions), with aggregates of molecules which encage the ion
(e.g., solvation and coordination), or special molecules which trap
ions within the molecular structure (crypts). For cach of these
examples, the harmonic oscillations of the ion in the presence of the
molecular structurec can be observed. Moreover, in many instances,
the stability of the ionic motions in the prescnce of the molecular
structure is important in considering some form of transport process
which is associated with the ion. In this paper we present an analysis
of the mechanics of the motion of an ion under the influence of
various molecular structures. For our analyses, we use a form of
symmetry-adapted Taylor series which we recently developed. We
determine the positions of cquilibrium for the ion in the presence
of a continuous ring, a polygon and a polyhedron of sources for the
pair-wise forces. We also determine the states of stability for the
positions of cquilibrium through an examination of the second order
terms in the Taylor series. We show that the general form for the
Taylor scries for a continuous ring is of the same form as that for
a discrecte polygon. We also show that small numbers of terms in the
Taylor scries can duplicate the exact potential for an atom within

a tetrahedron or octahedron of sources to a high degree of accuracy.




1. Introduction

There are many examples of systems which involve the associa-
tion of an ion or atom with a ring-like molecule, with a cage-like
molecule, or with an aggregate of molecules. Cation/radical anion
pairs, in which the radical anion is an aromatic ring, constitute
a class of examples which has been well studied.1 In the last
decade or so, considerable interest has grown around certain molecules,
referred to generically as crypts, which are capable of binding
small ions within a fairly rigid molecular cage.2 Finally, the
well known states of solvation or coordination of ions in solution
also serve as examples.3 For all of these systems of aggregation,
it is of considerable importance to be able to specify the states
of vibration and the conditions for mechanical stability for an ion
or atom with respect to the larger ring, crypt, or cage of solvent
or ligand. A number of transport and kinetic processes depend upon
these vibrational states in order to account for part of their
activation.

In this paper, therefore, we examine the vibrations and
mechanical stabilities of an ion or atom which is associated with a
ring, crypt, or cage of solvent. 1In order to carrv out this
examination of the vibrations and mechanical stabilities, we usec
a form of symmetry-adapted Taylor series which we reccentlyv
de\reloped.“.6 An important facet of the analysis to follow builds
upon the fact that polygonal rings and polyhedral cages are closely

related from a mechanical point of view.
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In the next section we summarize the formulae which are needed
to carry out the subsequent analyses. Following that summary, we
present the results of our examinations of the ring and cage systems.
We examine the use of a variety of potential energy functions from
the electrostatic Coulombic potential to the Buckingham exp-6
and related potentials.

We have already shown that the form of analysis summarized
in the next section is very useful for the elaboration of the naturc

4,7-10 These

of forces which operate in solvated ionic systems.
methods, we believe, also can be useful for many other applications

as well.

2. The Symmetry-adapted Taylor Series

Elsewhere we have shown5 that for a general class of functions
which consist of separable and purely angular and radial parts of the

form
G(R) = Y, (RIF(R), (2.1)

in which YAu(R) is the spherical harmonic function, the Taylor

series 1is

n

. 3/2 ¢ r .yL+n " -
G(R+r) = (47) ] —r (-1) A Y. ., (R)Y, (1)
~ - ns0 M LMo2,m ng LM em
1/2
2L+1
X[Tmﬂ = (LSLOOIAO)(L!LMm|>\u)InL(R). (2.2)
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The vector r is a displacement from an end-point of R. In eq (2.2)

the quantity Ann is given by11

p-
il

ne 0 for £ > n and n - % odd

1 - 1
= %ﬁ%;}}?i§2+§1%%ii for £ < n and ¢ - n even (2.3)

The quantity (L&Mm|Au) is a Clebsch-Gordan coefficient12 and InI(R)
is defined by

1L R) = — f dk kN2 £(k)j | (KR) (2.4)

(2m)

in which jL(kR) is the spherical Bessel function of the first kind.12
The function f(k) defines the radial Fourier transform of

F(R):5
£(K) = 4ni*J dR RZF(R) ], (KR). (2.5)
0

The Taylor series for a scalar function,

Yoo (R) [VATE(R) ]

Go (R)

F(R), (2.6)
assumes a particularly simple form:

Go(r+R) = /&% ] («"/n1) FCDAMA P RO (R) (2.7)
n=0 [

AN

in which Pg(x) is the Legendre polynomiall2 of order ¢ and Rer is
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the scalar product of the unit vectors R and r.

. 5 - ] .
We have also shown™ that the Tavlor scerics (2.2) for a

scalar function can be expressed as

w

CRa) o S, ] -3 (0+q) ! p-qfn-y
F(R+1) nfn(l /n! )ZK o (R S ?0 -1 (7 l, R |

Slazamy™ U ey (2.8)

This simple form retains the angular dependencies of eq (2.2)
and displays differentiations with respect only to the radial
quantities,

We now list several explicit ecxpansions of potential encrpy
functions which we will use in the next section.

The expansion for the Coulomb potentiol is identical to the

. . i - 13
familiar Laplace cxpansion

I S K -
s~ LT Pa(Rem). =)

For the Morse potential,
by (R) = Dexplo (Ro-R)J{expla (Ro-R)] - 2} (2.1M

where D is the dissociation energy and a is a parameter, we have

found6

by (R+r) =D I ()" %- AP Q(R r){zn Z“R"[?akk 1 (2 R) {
‘ n,%

?

- (n-0)k, (20R)]- anR"[aRkl_](aR) - (n-2)k, @R)]} (2.11)
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in which the functions kn(x) are the modified spherical Bessel

functions of the third kind:13
-1 ne=x
k(X)) = (-x)?(x""d/dx) = (2.12)

For an arbitrary inverse power of R, R-q, we have also found5

1 _ 1 D oA p (ﬁ.;)(2+s)!(an-5-2)!(_r/R)n.

N
|B+§lq (q-Z)!Rq n,t,s ni ¢ n!(2-s)1(2s)! (2.13)

This expression is equivalent to one derived by Brie1514 who used

functional expansions.

The Buckingham exp-6 potential

-BR

¢g(R) = A e - ¢/r° (2.14)

is simply a combination of an expansion for the exponential and eq

(2.13). The result 1is

dp(R+T) = n22(~r)“ 1 Angpl(ﬁ-;)[AB“[BRkQ_l(BR)—(n-R)kQ(BR)]

1 1 3 (£+s)!(n+4-5)!] (2.15)

28 6 Ly TTE-S)T(Zs) !

It is a straightforward matter to add the Coulomb potential
to any of the various forms in order to generate potential functions
for ions which interact with a variety of molecular aggregates.
Crystal field calculations with the use of the Coulomb potential

15

eq (2.9) of course are well known. An essential feature of the

cyrstal field calculations is the exploitation of cubic point
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group svmmetries to sort out various terms in the expansions.  The
svmmetry -adapted Tayvlor series we have developed works similarly.

The examples we investigate in the next section illustrate this.

3. Applications to Rings and Cages
\

We begin this section with an investigation of the system which

s

consist

fi

of a continuous ring of matter. We develop a Taylor series

for the potential energy function for such a system. Next, we

examine a polvgon of sources in a plane (an example of which would be
the benzene ring). We show that the results obtained for the poly-

gon bear a strikingly close similarity to thosc obtained for the ring.
Finally, we examine systems of sources which are distributed at the
vertices ol a tetrahedron and an octahedron. We develop these analyses
respectively from considerations of distributions of sources in
triangles and squares. Additional sources are placed at appropriate
positions on the axes which pass through the centres of these

figures. The conditions for mechanical stability within these

systems still bear some similarity to the conditions for stability

which we derive for the ring and polygon.

a. Rings of source density

The classical problem of the determination of the form of
the potential duec to a ring of charge density is well known.]’
Similar treatments for other possible source matter densities scem

not to have been given. We have considered this problem

for the Yukawa (or Debye-iiickel) potential6 and we examine it

| —




further in this section.
We consider the general problem of the potential due to an
incremental source dQ distributed continuously as a ring of matter

{neutral or charged):

aQ = é%—d¢R. (3.

The magnitude of R is a constant. Thus,

dQ P, (Re1) = & " (£-m) pM 050 )P (cost im(
Q Py(Rer) = 5 dop é )T g (€0s8p) Py (cosd Jexp[im(ey
(4]

- 6]

= Q Pz(coseR)Pl(coser). (3.

The general form of the potential now is

Go(R+1) = v&7Q J (r"/n1)](-1)*"MA_,P, (cos0,)P (coss )T

(R).
n=0 L 2
(3.
The condition for equilibrium is simply
Pl(COSBR)Ill(R) = 0. (3.
From this equation we identify two conditions for cquilibrium:
(1)
Pl(coseR) =0, GR = w/2 {3.

The position of the point of equilibrium is at the origin of r, viz,

1)

5)




the centre of the ring.

The second condition for equilibrium is

(2)

I,i(R} = 0. (3.6)
This condition may in fact be satisfied by more than one value of
R. Usually, as we shall see, only one value of R is significant;
the second value may correspond, for example, to the (not useful)
case of infinite separation.

It is worth noting at this point that from eq (2.8)

InR) = §k| =0 (3.7)

R
e
as one would expect.

Stability is determined, for an arbitrary form of displace-
ment, by evaluating the second order coefiicient in the Taylor
series. The second order term from (3.3) is written as

2
to(R+1) = VATQY |- 7120(R) + 3P, (cos0,)Po(cosd JIo2(R)|.  (3.8)
For the first point of equilibrium, (1) above, bp = n/2, Pz(coseR )=
e e
-1/2, and Re=a, the radius of the ring, and
2
ef) =TT Q5 1R + PaleosoTaa(Ry)]. (3.9)

For an axial displacement at the centre of the ring, Pz(coser)

= +1, Thus,
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tgaxial) = - fgi Q%z Izo(Re) + Izz(Re)] (3.10)

The sign of I, + 1,2 is all-important. If the sign is negative,
the motion is stable.

For a transverse displacement about a position of equilibrium

at the centre of the ring, Pz(coser) = -1/2, and
t /A 2 1
eftrans) L1 q 2T (Ry) - la2 (R (3.11)

The second position of equilibrium lies on the axis which
passes through the centre of the ring. At this second point, R=R,

where Re is the solution to I"(Re) = 0., We find,
-a2]1/2 (3.12)
with the Legendre polynomial evaluated as

P, (cos® =1 - 3a2/2R§ (3.13)

R )
e

Thus,
2
t£2) = V&7 Q ; [- %Izo(Re) + %(I-SaZ/ZRé)pz(COSGr)Izz(Re)]-(3-14)
For an axial displacement, Pz(coser) = +]1, and

t§Z,axial) = /7 Q %2[- %IZO(RC) + (2/3-a2/Rg)Izz(Re)]. (3.15)

— e




_ll_
For a transverse motion, P?(cosﬂr) = - 1/2, and
2,trans r? 1 1
té ) - vaw Q3 [~ 3l20(Ry) - ’3‘(1‘332/2Ré)122(Re)]- (3.16)

It is difficult to make {urthcer progress at this point without
considering specific functional forms. From the expansions of the
various functions given in the last section, we are able to consider
several cases.

We examine now the ring of source for the Morsc potential.

The equilibrium condition le(Re) = 0 specifically yields
- ZaDexp[a(Ro-Re)] exp[a(Ro-Re)]-l] = 0. (3.17)

We sce that Re = Ry or Re = o satisfy this equation. The latter
value is not useful.

The quantity Ry, in the Morse potential is a separation which
is characteristic of the Morse interaction which operates between
two individual, spherical masses. It is definitely the case that
when the mass is distributed on a ring, positions and conditions of
equilibria and stability need not conform to the conditions which
apply to the simpler spherical, diatomic case. In this respect,
with the use of the Morse (and other) potentials in extended distribu-
tions, we see arising conditions of interpretation which are necessary
for composite potential functions such as the Stockmayer potential.16
The Stockmayer potential is the sum of a Lennard-Jones componcnt and
a dipolar interaction. The Lennard-Jones component, operating alone,

has a mecaningful minimum value which is associated with

a point of equilibrium for a diatomic system. When

T e
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combined with dipolar contributions, as is the case with the
Stockmayer potential, the minimum of the composite function need
not fall at the same place as the minimum for the Lennard-Jones
component alone. Yet, typically an interpretation is given17 which
says simply that the Lennard-Jones type of minimum in a Stockmayer
potential gives the location of the minimum if the dipolar
component were to vanish. We see similar interpretations applying
to the¢ use of diatomic potentials for extended distributions of
mass and charge.

The second order term for the expansion of the Morse potential
is simply

byp = %2 %—azD eXp[a(Ro-R)][Z exp[a(Ro-R)](1-1/aR)

-1+ 2/0R + Pz(coser)Pz(coseR)[4 expla(Rp-R)](1+1/2aR)
- 2(1+1/aR)]]. (3.18)

The individual contributions I,, and I,, are displayed separately

as

p{ferse) . . L 47p exp[u(Ro-R)][Z expla(Ro-R)](1-1/aR)

™

-1+ 2/aR] (3.19)

and
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l(Morso) _ 2
Y =

a?h oxp[a(Ro-R)][Z expla(Re-RYJ(1+1/2aR)
o 7z

-1 - l/aR]. (3.20)

Now we return to eq (3.10) and note that R=a. We have

M Mors 6 aD
lgoorse) * Igzorse) - ;%: %r CXP[G(RO—H)][l - exp[a(Ro—a)]]
m
(3.21)
Thus,
' ;. 2 . .
¢$é,ax141) = g 2%? ct(Ro-al) i a(Ro a)] (3.22)

This quantity is greater than zero only as long as Ry < a. For

Re > a, motion at the centre of the ring is not stable. The mass
cannot remain at the centre of the ring in this situation. It must
move to a position of cquilibrium elsewhere in the syvstem.

For the transverse motion at the centre of the ring, we find

1,trans ? Ro - Ro-a 7 - e
¢£2 rans) _ % 207D cﬂ( 0-d) cu( 0 )(1-1/2aa) A rr iR
(3.23)

This expression depends upon two dimensionless parameters which may
be chosen from aRp, aa, and a/Ry.
At the second position of equilibrium along the axis of the

ring, we find for eq (3.15)




-14-
| i 2

piar3xial) o 1% pa2p(1 - a?/R}) (3.24)

and for eq (3.16)
(2,trans) _ r? 2y Al 5
¢M2 - 2‘ 2(1 D R—z" . (‘5.‘.5)

1]
Each of these motions is stable. Indeed, for a?/R%= 2/3, the

resultant harmonic potential is spherical. This particular point
lies at an altitude h = 0.71a above the plane of the ring.

For the Buckingham exp-6 potential, the situation is more
complicated. Because the potential, as we have listed it, does not
depend on a diatomic equilibrium separation Ry, it is not as simple
here to identify the condition for instability at the centre of the
ring or elsewhere.

The radial equilibrium condition Ill(Re) = 0 is found to be

aBe "Re - 6C/R] = 0. (3.20)

The general second order term is

r? R

¢B2 = 5 %ABz(l-Z/BR)e—B - 30C/R® + 2P, (COSGR)PZ(coser)

x(AB?(1-1/BR)e BR - 48c/R®) (3.27)

Again, for the consideration of equilibrium at theccentre of

the ring, R=a. For the axial displacement,

-—
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. . 2 -
¢é§,axlal) . T % _ %?0 aB 18_2: ]. (3.28)
a

Here we find that if

AR ¢ B 5 18c/a7,

the axial disnlacement at the centre¢ of the ring will be unstable.

For the transverse displacement, we find

(1,trans) _ r? 11 B
2

Rt
LN = 3{7AB? (3-5/aB)e

- 54C/38]. (3.29)

For the second position of equilibrium, outside the ring,

but along the axis, we find

2

2 _r 1 2 -BR _ 5 . .
Ry 3 KAB e el (1 7/BRC) + u(l—9/BR0)P2(Losﬁr)Pz(cosﬁRe)
(3.30)
where we have used eq. (3.26) to eliminate C/Ri terms.  For an
axiail displacement, we find
(2,axial) _ r? 1 -BR 25 L a’ 4
dps’ = ¥ _AB’c 9[3 - mR -3 _?(]+9/RR0)]‘ (3.31)
¢ R
c
For the transverse displacement, we find
{2, trans r’ | -BR, [3a’ <
by ns) . 5 ghBle C[—l—(l*Q/BRQ) - Z/BRC]. (3.32)

2R?
¢

In these cases, it is necessary to test numerically for equilibrium

with the usc of specific values of the quantities A, B, and (.
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[f the Coulomb potential is added for a charged system, it

is necessary to add terms of the form

rk

<
oc(Rer) = quz(°°seR)P1(c°ser)”E?T (3.33)
T
>
in which r<(>) is the lesser (greater) of R and r. The addition of

terms to the potential clearly makes the task of finding stahilities

more difficult. However, the formalism does allow one to proceed

directly to answer such questions as those pertaining to stability.

b. Polygonal distributions of discrete sources

We write the general expansion of an arbitrary scalar function

for a collection of sources as

Go(R+r) = /AT if (r“/n!)z(-i)““Aszg(ﬁI-?)IM(RI) (3.34)
n=0 L 1

where the summation over I is considered over sources. For a regular

polygon, all RI are the same, R. The angular distributions with

respect to the centre of gravity of the distribution, of course, differ.

Consider, therefore, the sum over unit vectors ﬁI:

2 ~
A A 4 A
% pl(RI°r) - 2221 mz—zYQm(r)ngm(RI)

- -3 im¢
% %%;%%% P?(coser)Pm(coseR)e imody %e R1 (3.35)

For a regular polygon,¢ = 2an/N, where N is the total number of
R{ ’

discrete sources, and n = 0,1,2,...,N-1. Thus,
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N-1
5 _
nZO exp (i2amn/N) NGm,O' (3
Hence,
Yy = o n _:y&+n . :
Go (1) Vit N nZo(r /n!)%( 1)7TA P (cosBp)P o (cosB )T o (R) (3.

where cach Op is the same for a planc of sources.
Lq (3.37), apart from the number of discrete sources N, is
cxactly the same as (3.3). llence, all conditions of stability f{ournd

for the continuous ring apply equally to the regular polygonal

distribution of sources.

¢. Cages of sources: recgular polyhedra

We now consider regular polyhedral cages of sources. These
cages are constructed easily by distributing sources at the vertices
of tectrahcdrons, octahedrons, etc. The tetrahedron, for example, can
be rcalized in terms of a base triangle with a fourth source located
at an appropriate position on the axis which passes through the
centre of the triangle. An octahedron is realized similarly. The
plane of sources defines a square. Two additional sources are placed
axially.

In order to investigate the stabilities of these systems, we
makec use of the cxpressions for t, for polygons together with as many
additional terms for the axially located sources as needed. In the
following, we consider the tetrahedron and octahedron as the most

typically encountercd examples.

More complicated systems easily are

generated.

.30)

W

7)
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Considering first thc tetrahedron, we construct a basec triangle
of sources. In order to cexamine the mechanical stability of a test
particle located at the origin of the tetrahedron, we consider a point

above the plane. Thus,
2 .2
2%%3) = J/4n % -I,0(R) + 2(1-332/2R2)P2(c056r)Izz(R)). (3.38)

We locate the fourth source on the z-axis at a distance R from the

centre of the tetrahedral origin. Thus,
t - P L (R) + 2P, (cos8_)1,,(R) (3.39)
2T(b) 2 320 Zr2 r’t22 . . 3¢
The sum of these two terms gives
e = a7 20 41,0 R) + 2(4-9a2/2R?)P, (cosB ) 125 (R) (3.40)
2T ) 3720 3 2 r’22 . '
if, for cxample, we consider the locations of the sources on the

triangle to be (0,2/2R/3,-R/3) and (*+v2/3R,-V2R/3,-R/3), then it is
easy to see that a?/R? = 8/9. Hence,
r?{ 4 -
tZT = /Ii 7 - glzo(R) . (0.41)

For the octahedron, on the other hand, the base planc of (4)

sources contains the centrum of the system. Thus, we consider the

expression

S = AT E (- ) - $atcoso ) e (R) (5.42)
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for displacements about the centre. A second term for the additional

two axial sources is

.2
tom) = AT 2 ( $laa(R) + %PZ(COSGr)Izz(R)]- (3.43)

The sum 1is
r2
tZO = Jax > [-ZIZO(R)]. (3.44)

In both the cases of the tetrahedron and octahedron, the second
order Legendre polynomial disappears as is required by arguments
of symmetry.

It is useful now to investigate these results with the use of
specific functional forms. The use of the Morse potential yields
physically transparcnt and interesting conditions for stability.

For the Morse potcntial, for example, we can write

2

Somer) < 3 L exp[(x(Ro-R)][Z expla(Ro-R)] (1-1/0R) - 1
+ 2/aR]. (53.45)
If R = Ry, the force constant for an encaged particle is
kp = %(le), (3.40)

a result which we have found clsewhcrc.4 Similarly, the force constant

for the displacement of a test particle about the centre of an

octahedron of sources is

L“—-—-»-«




ko = 4a?D. (3.47)

In both of thecse cases, it is clear that the motions are mechanically
stable.

It is possible to consider the gencral question of the stability
of displacements about the centrc of gravity and symmetry in these

structures. From eq (3.19) we note that when
2 exp[a(Ro-R)]J(1-1/aR) - 1 + 2/aR < 0, (3.48)

a displacement is mechanically unstable. The condition (3.48)--for

the Morse potential--reduces easily to the following inequality:
1 2
R > Ro+ —fn2. (3.49)

When this inequality is satisfied, instability is guaranteed.

Such conditions of instability may be observed in actual systems.
Weaver (personal communication) has observed that the attempted
reduction of lithium 2.1.1 cryptate to form the cencrypted atom is
clectrochemically irreversible. The gross difference in size of the
atom as compared to the cation suggests the system may be unable
to accomodatce the atomic species. If the encrypted species is
mechanically unstable in that location, then some form of tunnelling

out of the crypt would be expected rapidly to occur.




d. A truncated Taylor scries versus the exact potential: a comparison

We conclude this section by comparing a truncated Taylor
scries tor the Morse potential against the potential itself. We
consider again the tetrahedral cage of sources, cach of which is
described by the Morse potential.

The choice for the origin of the Taylor series is the point of
cquilibrium at the centre of the tetrahedron. The four vectors Bi
(1<i<3) from the centres of force to that point have the same length R.
Thus, only the angular factors differ in the four individual Tavlor
series.  The superposition of the Taylor scrics requires the considera-

tion of

4 ~ N
) PQ(Ri-r) (3.50)

i=1
in the manner previously discussed [cf., the last subsection]. This
resultant angular factor can be evaluated for arbitrary directions of
r. This angular factor (3.50) vanishes for £ = 1 because we have
chosen the point of equilibrium to be the origin. 1t also vanishes
for ¢ = 2 becausc the systcem has no quadrupole symmetry. We werce
surprised to discover that it also vanishes for & = 5, although
it does not vanish for any other value of ¢ up to 12,

In order to demonstrate the non-spherical nature of the
resultant potential, we have chosen three particular directions for

r. One of these is toward a vertex of the tetrahcedron, i.e., dircctly

toward onc of the centrcs of force. Another is toward the midpoint

of a face of the tctrahedron, i.c., dircectly away {rom onc of the
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centres of force. One can anticipate that these should be respectively
the directions of the most rapid and least rapid increase of potential.
The third direction was chosen toward the midpoint of an edge of the
tetrahedron, and should represent any intermediate rate of increase
ol the potential. The exact expression for the resultant potential
can also be readily evaluated along these directions.

In Figure 2 we show the result of an evaluation for the
particulur choice ot parameters aR = 4 and aRy = 6. We note the
tollowing particular features which are revealed in the figure. (1)

The potential 1s spherical and harmonic at the centre. (2) The

|92}

aspherical and anharmonic contribution is well described by n=3, .=
out to about r=0.1R (one third of the way to the face). (3) The
resultant potential i1s extremely well described by terms up to n=o,
Similar results are obtained {or an octahedron of centres of
force. In this case, however, the resultant potential exhibits an
even more spherical character., The exact potential is cffectively
duplicated with the use of terms n=2,4,6. For the tetrahedron, in
contrast, n=2,3,4,5,6; i.c., five terms are necded to give a4 good
fit. 1In both cases the actual potential functions are well represented

by a small number of terms.

4. Summary and conclusions

We have uscd a symmetry-adapted form of the Tavlor series in order
to investigate the nature of the stabilities predicted for scveral

mechanical systems. In particular, we have examined rings, polvgons

’

and polyhedra all of which share similar mathematical propertices.
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The examination of the system of a continuous circular distribu-
tion of matter which interacts with a point mass showed two fundamental
positions of cquilibrium: one is at the centre of the ring and the other
1s on the axis. We established the conditions for the points of
equilibrium to be stable. Next, we showed that a regular polygon is
mathematically similar to the continuous ring. The conditions for
cquilibrium and stability are the same for both systems. Finally,
we showed that questions of stability could be answered for regular
polyhedra by making use of the results for the polygons. It is
possible to show, for the cases of the tetrahedron and octahedron, that
under certain conditions even an enclosed point of equilibrium at the
centre of a regular solid can exhibit a mechanical instability with
respect to displacements about that point,

Wec belicve these results to be generally uscful for a number of
applications. The point of view which we adopt in carrying out our
analyses 1s that one mass be examined with reference to the static
collecction of surrounding masses (sources of force). For a number
of systems, it is sufficient merely to focus attention on a single
particle, such as a solvated ion. When this limited view is too
restrictive, it is quite simple successively to look at each mass
in a collection of interacting masses and develop a succession of
Taylor serics. Thus, in this manner the realistic harmonic vibrational
force field can be developed for a system such as a molecule. The
subscquent development is a picturc which is familiar as vibrational
spectroscopy. lor scalar potentials, the use of our form of the
Taylor serics ecnables one quickly to calculate harmonic and higher
order contributions.

The analyses of mechanical stability for polygons and polyhedra
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are important in the consideration of several transport processes.
The surface of a metal or semiconductor, for cexample, at which
clectrochemical oxidation or reduction can take place can be viewed
accurately as an extended surface network of interconnected polygons.
Thus, the question of the stability of a particle which interacts
with several polygons is important in the determination of the process
of surfacce migration. Simple systems, such as these extended polygons
as surfaces in vacua, can be rendered more complex by considering
additional distributions of molecules about the surface. The question
of the stability of a single particle cnmeshed in such a complex is
still a resolvable question. The system can be modelled. Positions
of ecquilibrium can be estublished casily. And, finally, stability
against displacement tor a particle can be determined. All of this
can be done for a wide variety of model potential cnergy functions.
As an example, in a separate paper, we consider the relative stabilitics
of solvated ions and atoms, and the implications these stabilitics

have on the deposition of a metal atom at an electrode surface.®

This work was supported in part by the Office of Naval Research,

Arlington, Virginia.
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Figure captions:

Figure 1. The geometry for the determination of the cequilibrium
condition near a ring of source for the Morse potential.

Figure 2. The potential energy as a function of displacement along
the radit in a tetrahedral cage of sources for the Morse potential,
As indicated in the insct, the radii are directed toward a vertex
(V), toward a ftace (F), or toward an c¢dge (E). The maximum displace-
ment considered is one-third of the distance to a vertex, i.e.,

the distance to a tace. The dashed curve in cach labelled pair is
produced by the Taylor scrices to order r?!, while the solid curve
represents (within the width of the line) both the exact super-

-

potision of the Morse potentials and the Taylor scries to order r
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